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Proof. Theorem 3.9 implies that if gcd(m,n) = 1 then
(Z/mnZ)* = (Z/mZ)* x (Z/nZ)",

and the result follows.
For the second part of the theorem notice that if p is prime and & > 0

then among the numbers 1,2,...,p" all multiples of p and only those are
not coprime to p*. There are p*~! many such numbers. Therefore ¢(p*) =
b — L O

Proposition 3.15. 3, ¢(d) = n.

Proof 1. For a divisor d of n denote Ag :={a:1<a <n:ged(n,a) = d}.
Then {1,...,n} is the disjoint union of (Aq)q, and |A4| = p(n/d). O

Proof 2. Since ¢ is multiplicative, Y4, ©(d) is also multiplicative. So it
suffices to establish the equality for n = p* where p is a prime. In this case
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3.6 Euler’s theorem
Theorem 3.16 (Euler). If gcd(a,m) = 1 then a¥™ =1 mod m.
Proof 1. Denote k := ¢(m) and let my,...,my be a reduced residue system

modulo m, that is, ged(m;, m) =1 for all i and m; # m; mod m for i # j.
In other words, (Z/mZ)* = {mi,...,my}.

Observe that amy, ..., amy is again a reduced residue system mod m and
hence it is a permutation of my, ..., my mod m. Therefore
[Tmi=]]am = akai.
Since ged (TT; mi, m) = 1, we can deduce that a* =1 mod m. O

Proof 2. Consider the multiplicative group (Z/mZ)* and its subgroup (a)
generated by a. If the latter has order (cardinality) n then a" = 1. By
Lagrange’s theorem n divides the order of the group (Z/mZ)* which is p(m).
Thus, a¥™ =1 in (Z/mZ)* and we are done. O

Corollary 3.17 (Fermat’s little theorem). If p is prime and p 1 a then
a’"'' =1 mod p.

Proof. When p is prime, ¢(p) =p — 1. O



