Proof. Theorem 3.9 implies that if gcd(m, n) = 1 then

$$(\mathbb{Z}/mn\mathbb{Z})^{\times} \cong (\mathbb{Z}/m\mathbb{Z})^{\times} \times (\mathbb{Z}/n\mathbb{Z})^{\times},$$

and the result follows.

For the second part of the theorem notice that if p is prime and k > 0 then among the numbers $1, 2, \ldots, p^k$ all multiples of p and only those are not coprime to p^k . There are p^{k-1} many such numbers. Therefore $\varphi(p^k) = p^k - p^{k-1}$.

Proposition 3.15. $\sum_{d|n} \varphi(d) = n$.

Proof 1. For a divisor d of n denote $A_d := \{a : 1 \le a \le n : \gcd(n, a) = d\}$. Then $\{1, \ldots, n\}$ is the disjoint union of $(A_d)_{d|n}$ and $|A_d| = \varphi(n/d)$.

Proof 2. Since φ is multiplicative, $\sum_{d|n} \varphi(d)$ is also multiplicative. So it suffices to establish the equality for $n = p^k$ where p is a prime. In this case

$$\sum_{d|n} \varphi(d) = \sum_{i=0}^k \varphi(p^i) = 1 + (p-1) + (p^2 - p) + \dots + (p^k - p^{k-1}) = p^k.$$

3.6 Euler's theorem

Theorem 3.16 (Euler). If gcd(a, m) = 1 then $a^{\varphi(m)} \equiv 1 \mod m$.

Proof 1. Denote $k := \varphi(m)$ and let m_1, \ldots, m_k be a reduced residue system modulo m, that is, $\gcd(m_i, m) = 1$ for all i and $m_i \not\equiv m_j \mod m$ for $i \neq j$. In other words, $(\mathbb{Z}/m\mathbb{Z})^{\times} = \{m_1, \ldots, m_k\}$.

Observe that am_1, \ldots, am_k is again a reduced residue system mod m and hence it is a permutation of $m_1, \ldots, m_k \mod m$. Therefore

$$\prod_{i} m_{i} \equiv \prod_{i} a m_{i} = a^{k} \prod_{i} m_{i}.$$

Since $\gcd(\prod_i m_i, m) = 1$, we can deduce that $a^k \equiv 1 \mod m$.

Proof 2. Consider the multiplicative group $(\mathbb{Z}/m\mathbb{Z})^{\times}$ and its subgroup (a) generated by a. If the latter has order (cardinality) n then $a^n = 1$. By Lagrange's theorem n divides the order of the group $(\mathbb{Z}/m\mathbb{Z})^{\times}$ which is $\varphi(m)$. Thus, $a^{\varphi(m)} = 1$ in $(\mathbb{Z}/m\mathbb{Z})^{\times}$ and we are done.

Corollary 3.17 (Fermat's little theorem). If p is prime and $p \nmid a$ then $a^{p-1} \equiv 1 \mod p$.

Proof. When p is prime, $\varphi(p) = p - 1$.